Quantitative stability for the Heisenberg–Pauli–Weyl inequality

نویسندگان

چکیده

We prove a quantitative stability result for the Heisenberg–Pauli–Weyl inequality. This leads to next, and next-to-next order correction terms in

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative stability for the Brunn-Minkowski inequality

We prove a quantitative stability result for the Brunn-Minkowski inequality: if |A| = |B| = 1, t ∈ [τ, 1−τ ] with τ > 0, and |tA+(1−t)B| ≤ 1+δ for some small δ, then, up to a translation, both A and B are quantitatively close (in terms of δ) to a convex set K.

متن کامل

Quantitative Stability in the Isodiametric Inequality via the Isoperimetric Inequality

The isodiametric inequality is derived from the isoperimetric inequality trough a variational principle, establishing that balls maximize the perimeter among convex sets with fixed diameter. This principle brings also quantitative improvements to the isodiametric inequality, shown to be sharp by explicit nearly optimal sets.

متن کامل

Quantitative stability results for the Brunn-Minkowski inequality

The Brunn-Minkowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This inequality plays a crucial role in the theory of convex bodies and has many interactions with isoperimetry and functional analysis. Stability of optimizers of this inequality in one dimension is a consequence of classical results in additive combinatorics....

متن کامل

The Stability Inequality for Ricci-flat Cones

In this article, we thoroughly investigate the stability inequality for Ricci-flat cones. Perhaps most importantly, we prove that the Ricci-flat cone over CP 2 is stable, showing that the first stable non-flat Ricci-flat cone occurs in the smallest possible dimension. On the other hand, we prove that many other examples of Ricci-flat cones over 4-manifolds are unstable, and that Ricci-flat cone...

متن کامل

Stability Results for the Brunn-minkowski Inequality

The Brunn-Miknowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This classical inequality in convex geometry was inspired by issues around the isoperimetric problem and was considered for a long time to belong to geometry, where its significance is widely recognized. However, it is by now clear that the Brunn-Miknowski ineq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2021

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2020.112147